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Theoretical methods of analysis of phenomena occurring in chemical apparatas with P 
‘flnidieed layer’ are of great interest at present, primarily in connection with the wide 
application of such equipment in industrial chemical technology. 

The complexity and multistage nature of processes taking place in the fluidixtd layer 
leave little hope for a complete description of these processes by menns of some single 
method. However, a characteristic feature of almost all processes taking place in the 
flnidized layer is their strong dependence on the nature of mechanical motion of solid 
particles which form the layer. 

A large number of papers are devoted to both, the theoretica and experimental in- 

vestigation of processes which take place in the flnidized layer. Nevertheless, at the 
present time a theoretical model has not yet been created which would describe in suffi- 
cient detail the characteristics of mechanical motion of solid particles forming the layer. 
Namely, in certain models nsed at present the nature of the sharp transition into the 
pseudo-fluidized stats is not developed, distribution of particles with respect to velocities 
and the relationship between particles velocity distribution and gas flow parameters are 
not determined, etc. 

In this paper the simplest kinetic model of a fluid&d layer is presented based on the 
idea that the solid particles in the layer can be represented by an aggregate of elastic 
spheres, while their interaction with the suspending gas flow leads to diffusion of the 
point representing the particle in its velocity space. 

1. Kfnetfc equation. We denote by f (x, U, t) the distribution function of a number of 

particles such that the number of particies in the volume [ZS, 21 j- d;Zi] possessing 

velocities in the interval [t&i, US f ~zQ], is equal to f (x, U, t) dxdu, where 

dx = dxldx,dx3 and du = d~~du~u~ For the purpose of simplicity it is assumed 

that the solid particles represent elastic spheres of equal size. 

A change in the number of particles in the voiwne dxdu is a result of convective 

transfer accorss the boundaries of the volume dxdu and of mutual collisions of particles 

in the volume dx. Then, taking into account that the chsnge of particle velocity occurs, 

generally speaking, under the influence of forces which depend on the velocity of their 
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motion and repeating almost verbatim the derivation procedure of the fundamental equa- 

tion in the kinetic theory of gases [l and 21, we obtain 

(1.1) 

Here m is the mass of the individual particle, C (ffi) is the rate of change in the num- 

ber of particles in the volume dxdu due to their mutual collisions with particles in the 

volume dx, Fi is the force acting on an individual particle. 

Each particle in the volume dxdu is acted upon by the force of gravity equal to mg, 
where g is the acceleration due to gravity, and the force from the direction of the sus- 
pending stream. The latter force can be represented in the form of three terms. The first 

term results from the regular component of the suspending gas under the assumption that 
the distribution of particles is orderly and that their velocities are equal to each other. 
The two other terms represent the irregular component of the suspending flow and the 
deviation of mutual distribution and of velocities of particles from the ordered state. If 

the assumption is made that deviations from the average value of this force assume statis- 
tically independent values in non-overlapping time intervals, then, in analogy to Rrownian 

motion [3 and 41 we obtain for this force 

Fz=‘Pz([U-w])(w-u)-DVl”f 

Therefore the full force acting on each particle is 

s 
Uf(X, u, C)du 

(1.2) 
w = 

Here w is the average Nelocity of particles, q is the average hydrodynamic velocity 

of the suspending flow ; cpl,and ‘pz are functions the form of which depends on the particle 

size, their shape, the density and viscosity of the suspending flow, etc ; D is the diffusion 

coefficient in the velocity space of an individual particle. The relationship of the quantity 

D with other characteristics of motion will be discussed in the next paragraph. 

Substituting (1.2) into (1.1) we obtain the kinetic equation 

(1.3) 

2. Solution of kinetic equation for small velocities of random motion. Suspension of a 

layer consisting of sufficiently friable and heavy particles by the stream of gas takes place 

at sufficiently high velocities of motion of gas relative to the particles. The magnitude of 

force acting on each particle in the gas stream depends not only on the velocity of the 

surrounding flow but also on the presence of neighboring particles. The latter is related 

to the mutual interaction of perturbations which are introduced by particles into the sur- 

rounding gas stream. The exact expression for (PI in (1.2) is not known, but various eemi- 

empirical relationships are proposed for the determination of the magnitude of force acted 

by the flow upon each particle [s]. These relationships can be used for detailed quantitative 
computations. For the analysis of qualitative features of the process, gI can be assumed 
to be 
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cpI =: h,, /q - w [(;-I 13 >, 1) (2.1) 

Here &, is a constant which depends on the shape and size of particles, on the density 

of particles,on the suspending flow and its viscosity etc; ,/3 is a dimensionless quant- 

ity. 

If the velocities of the random motion of particles with respect to their average velocity 

are not large, then with sufficient degree of accuracy it may be assumed, that 

cp2 = h = con& (2.21 

Let the particles be located above some horizontal boundary pIane through which the 

vertical suspending gas flow enters the system. The axis x1 is oriented vertically upwards, 

while the axes r, and r, arelocated in the boundary plane. 

We shall examine the case of stationary state of the suspended layer. Taking into 

account (2.11 and (2.21, we obtain 

We shall look for the solution in the form 

f (x, 4 = @ cd cp fN (2.4 

We note that the term in (2.3) which represents the collisions between the particles 
becomes equal to zero on the substitution of a function of the form 

rp (24) = a e-YV.’ 

for arbitrary a and y . If we write y I X/2D, then substituting into the right hand side of 
(2.3) the function 

f (5, u) = 0 (23 exp -$ (2.5) 

we obtain zero, and the condition that the left-hand part of (2.5) becomes equal to zero, 
leads to the equation for the determination of @ (xi) 

By definition, the number of particfes per unit vofume is 

Hence 

72 (Xl) = s f (x, u) du = (qy* cf, (Xl) 

f (2, 24) = n (Xl) (&) VI exp * 

The quantity q depends on x1 and ia related to n in some way. From the condition that 

the mass of gas flowing through any plane perpendicular to axis xr is constant, we obtain 

Q (Z$ e (23 = Q = const 

where e (~3 ia the relative volume occupied by gas. If 

(2.8) 

(2.71 
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No = 6fnd3 (2.9) 

where d is the diameter of the particle, then 

R (“1) = 1 - n (Xl) I No (2.10) 

Let us introduce the following dimensionless quantities 

Xl = h,z, R = Q (hi, I wP 

where ho is the initial thickness of the layer of solid particles. Then 

de WQ 1 

dr=-T- ( - -$)(i-8) 

(2.11) 

(2.12) 

The condition permitting a unique solution of equation (2.12) can be obtained from the 
requirement of conservation of the number of particles in the fluidized layer. In the absence 

of the suspending flow, the number of particles to be found in a cylinder with a base area 

equal to unity will be N&a, where N, is the number of particles per unit volume under the 

condition of dense pa&fug of these particles. It is obvious that N, <No. Since the total 

numbor of particles in the cylinder should also be conserved in the presence of the 
suspending flow, we will have 

CD 

s 
0 

Ii-e(z)]dz +g 

Before investigating the equation (2.12) with the condition (2.13), it is necessary to 

analyze more closely parsmeters which determine the solution of kinetic equation in the 
form (2.4). This solution depends on the following parameters : 

(2.14) 

First of them characterizes the intensiry of flnidization of the particle by the flow of 
gas. The value of the ratio N&/No is known if the particle diameter is known and it char- 

acterizes the minimum porosity of the layer. The quantities ho, h and 6 are determined 

from the hydrodynamic properties of particles. 

The diffusion coefficient in the velocity space can be easily related to other character- 
istics of the process which permit a quite descriptive physical interpretation. The average 
kinetic energy of motion of an individual particle does not depend on x1, and this can be 
shown analogously to the way it is done in the classical kinetic theory of gases 161. 

After some simple computations, we obtain 

w =30/h (2.15) 

If h and the RMS velocity of the random motion are known, then D can be easily fouud. 
We note that relationship (2.15) can be given another form. In fact, the average rate of 
kinetic energy dissipation of the individual particle is 

(dE 1 dt) = (h (u a)) = h (u’) = 3D (2.16) 

In case when the quantity <dE/dt> is known or determinable by of direct measurements, 
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the subsequent determination of D does not present any difficulties. 

The introduction of parameter D into the kinetic equation is related to the irregularity I 
of the true velocity field of the suspending flow. As a first approximation it may be as- 

sumed that the intensity of variation of average characteristics of the suspending flow 

depends only on Q. The forces acting on a particle and producing irregular changes in its 

velocity naturally will depend on h and CL and also on the density of the suspending flow, 

its viscosity etc. If parameters Q, h and d are taken as the fundamental dimensional 

characteristics of these forces then 

D = hQaDo (2.17) 

Jf/fi, 
FIG. I 

f Solution of Equation (2.18) always exists under the 

condition (2.13) and is unique, if 0 < R < 1. 

where, in accordance with what was said above, Do will 

be a slowly varying function of parameters enumerated 

above. In the first approximation Do may apparently be 

assumed to be a constant. 

Utilizing (2.17) we finally obtain 

Analysis of the solution can be carried out by the usual, well-known methods. Quali- 

tative form of the solution is ehown on fig. 1. For R = 1 we have n(r,l = 0 for all x,. This 

result appears completely natural, since for I? = 1, each particle can be in equilibrium in 

the suspending flow, unaffected by the presence of other particles. If R < 1, then the 

solution of (2.18) always has a point of inflection, the coordinate x1* of which approaches 

h,, when R -+ 0, while dn/dx at the point of inflection tends to - 00 when R -+ 0. 

The coordinate xl* of the inflection point for small 

R, can be taken in the first approximation, as the effective 

thickness of the suspending layer. 

The solution constructed above is based on the as- 

sumption that translation of particles along the vertical is 

unrestricted. It is interesting to investigate the character 

of the solution of the kinetic equation in the gap be- 

tween two parallel horizontal planes which restrict the 

possible verticai translation of particles. The distance 

between planes is designated by hr, and (hJho) = z,, > 1. 

The condition (2.13) is now rewritten in the form 

2 

I (1 - E (2)) dz = -$ (2.191 

0 

Solution of (2.18) also exists for the condition (2.191 

and appears to be unique. Its qualitative character is 
shown for various R on Fig, 2. 
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We note that for some Q = Q* a solution E (2) = R*, exists, and 

From this 

Q* = (Z)“Q[1 _ $ ($1 

(2.20) 

(2.21) 

In this case the average number of particles in any vertical cross-section of the layer is 

constant, and the distribution function is 

f (5, u) = -y (&)‘, *q)-z.g (2.22) 

3. Spatially homogeneous distribution for non-linear resistance law. We shall now 

examine the problem of finding the distribution function in the case when the velocities 

of the random motion of particles are sufficiently large and the linear, relationship (2.2) 

must be defined more accurately. We write 

TPa = h (1 + au) (3.1) 

where cx is some positive constant, and in the following we shaI1 limit ourselves to the 

anaiysis of a stationary, spatially homogeneous condition. The kinetic equation in this 

case is rewritten in the following way : 

(3.2) 

In analogy to the Chapman-Enskog method (21 we shall seek the solution of (3.2) in the 

form 

f = f(O) + f(l) + . . . (3.3) 

and we shall limit ourselves to the first approximation. Substituting (3.3) into (3.21, we 

obtain for f(O) and f(t) 

From (3.4) it follows in the general case, that 

f(o) = ae-YU’ (3.6) 

where a and y are arbitrary positive constants. 

We note that the properties of the collision integral impose certain restraints on the 

function of 
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Here $(“’ are additive invariauts of collisions [Z]. F’or ‘I’(r)= m, q2 = ma Equation 

(3.7) is satisfied automaticaily if ,/’ and its partial derivatives with respect at velocities 

tend to zero sufficiently rapidly when u + W, and also by virtue of spatial isotropy of 

the state, in which no directions predominate in the phase space of the particle. Con- 

versely, for Y(3) = '/, mu2 condition (3.7) leads to the non-trivial relationship 

(3.8) 

(completely analogous to 2.16). 

On substitution of (3.3) into (3.71, a series of conditions is obtained for the functions 

f(o), fW . etc. Function ffot is determined by these conditions with the accuracy to an 

arbitrary factor 

f 
(0) = aexp [-cl&q], g (1 + @I? = Jg ($ )“” 

(3.9) 

Ily virtue of triviality of (3.7) we can impose on VI(‘) and ‘?(‘l the condition 

s lp)f ‘Q” = s y+“‘f (I)&’ = 0 

Then, from the normalising condition 

we can determine d, end finally obtain for f(O) 

Let us introduce the dimensionless particle velocity 

(3.101 

(3.111 

(3.121 

(3.131 

Now, Equation (3.51 can be written in terms of ci, in the following form 

Here 

f(l) = f’O’F , (3.151 

and in agreement with the notation accepted in the kinetic theory of gases [21 the indices 

of F indicate the form of dependence of the argument on the variables of integration. 

The general scalar solution of equation (3.141 can be represented in the form of a 

sum of the general solution of the homogeneous equation and the particular solution of 

the inhomogeneous equation 

F = Al + A&2 + i _4;ci + CP 
(3.161 

i=l 
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Here A,, ’ Ai and A, are arbitrary constants and @ is the particular solution of the in- 

homogeneous equation. 

We note that the conditions of solvability of Equation (3.141 are satisfied as long as 

the conditions (3.7) are satisfied for the function f(O). 

The particular solution of the inhomogeneous equation can be formed using the well 

known method in the kinetic theory of gases for representation of the solution in the form 

of a series in Sonin [2] polynomials. In the case under examination we write 

(3.181 

Sl(O) (~2) - 2S,‘l’ ($) + ‘+ &$1(l) (cp)] f+ 

Here S,(k) (c”) is the Sonin polynomial of order k. 

Conditions (3.8) and (3.10) can be satisfied if in (3.16) we write Al = Af = A3 = 0. In 

fact, equality of A: to zero necessarily follows from spatial isotropy of the state fit is 

also possible to convince oneself in the validity of this statement by means of direct cal- 

culations). Terms with A, and A, can be represented in the form of linear combination of 

S,(O) and S,(l) and included in a, and at in the expansion (3.17). At the same time a0 and 

o, must be determined from the conditions (3.8) and (3.101, since St(‘) and St(‘) are the 

eigenfunctions of the integral operator found in the left-hand part of (3.181 and are orthogonal 

with respect to the right-hand side of this equation. 

Multiplying (3.18) by S,fk)(c3 and integrating over all c we shall obtain an infinite 

system of equations for determination of a,. (r > 2) 
co 

2 Arkar = Bk (k > 2) 

A,+ = s de 1 d$ !J dclj c -cl1 sinII,~os$[S~(')(c*~) + Sl(r)(~1*2) 

0 0 

_ S1(')(c2) - Sl(')(clz)] Sl(kte-C'-C~' 
(r, k>2) 

Bk = s [S1(‘) (c”) - 2S,“) (c") + ‘+ cS~(~) (@)I e-c’h’lk (c2) dc = 

= 231 ; (- I)‘(3 (2p- 1) (k>,2) 
p=o. 

- 

(3.191 

(3.201 

(3.21) 

Conditions (3.81 and (3.10) allow us to express a,, and at immediately in terms of 

q(r > 2) 
00 
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Coefficients U, (r> 2) can be found with 

any degree of accuracy, by means of the method of 

successive approximations employed in the kinetic 

theory of gases. The corresponding procedure of the 

method of successive approximations consists in the 

replacement of the infinite series by a finite sum of 

first n members with subsequent soIution of a system 

of n linear algebraic equations. 

FIG. 3 

c If we limit ourselves to a series with three terms, 

we obtain for the distribution function 

f = j(O) [I + 2nE (1 + E)‘/* s-* (c” - I.ciSc” - 1.13)l (3.23) 

For small t,the behavior of f(O) and f is shown qualitatively in fig. 3. Non-linearity 

in the resistance manifests itself in, the fact that the region of ‘concentration’ of the 

distribution function widens. 

Finally we note that the constructed model of the fluidized layer leads to results 

which are in good qualitative agreement with experiments. In particular, for small velocities 

of suspending flow the proposed model leads to a sharply developed layer with almost 

constant number of particles per unit volume along the height within the boundaries of the 

layer. Also, the function f contains exhaustive information about average characteristics 

of mechanical motion of particles and permits, in principle to compute any average cher- 

acteristics of processes taking place in the fluidized layer if the characteristics of ele- 

mentary processes taking place on each separate particle and associated with its mechan- 

ical motion,are known. 

As an example we shall examine the problem of computing the average velocity of re- 

action in a unit volume of the fluidized layer if the reaction proceeds only on the surface 

of particles and if the rate of the conversion process on each particle is determined only 

by the flow of reagent onto the particle surface. When no coIlision occurs the flow of 

the reagent onto the surface of the particle is determined by the velocity of motion of the 

particle, while during the collisions , it is determined by their relative velocity because 

of large velocity gradients between particles. Denoting by qib,) and q,(ul - us) the flow 

of reagent onto the surface of a particle while it moves between the collisions and during 

the moments of collisions respectively, we obtain for the average velocity of reaction per 

unit volume of fluidized layer 

In this manner the computation is reduced to computation of quantities q,(u) and 

Qi (4 - uz) for the individual particle, i.e. esseutiafly to a solution of hydrodyn~ic 

problems for which at present time the methods of solution are sufficiently weI worked 

out. 
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